What is Artificial Intelligence?

First, let’s explore the basic definition. Artificial intelligence, which is also known as machine intelligence, is a branch of computer science that aims to imbue software with the ability to analyze its environment using either predetermined rules and search algorithms or pattern recognizing machine learning models, and then make decisions based on those analyses. In this way, AI attempts to mimic biological intelligence to allow the software application or system to act with varying degrees of autonomy, thereby reducing manual human intervention for a wide range of functions.

What Does an Artificial Intelligence Engineer Do?

Artificial intelligence and machine learning engineers work on a variety of projects. The exact responsibilities will depend on the company, industry, the specific role and other factors, but according to SuperDataScience, the main duties of an AI engineer typically include:

  • Computer programming, using languages such as Java, Python or C++
  • Working with data, statistics and algorithms
  • Using data modeling and evaluation strategies
  • Applying machine learning algorithms and libraries
  • Research and design deep learning applications
  • In general, the report says, the role of an AI engineer can be broken down into four categories:
  1. AI or Machine Learning Researcher

This role involves exploring the theoretical side of AI, and looking to further the development of the technology or apply it to new areas.

  1. AI Software Developer or Program Manager

These engineers apply machine learning to a given data set. Strong programming and mathematical skills are needed for this role.

  1. Data Analysis and Data Mining Engineers

This position uses modeling and creating deep-learning systems to recognize and respond to patterns.

  1. Machine Learning Engineers

This covers everything else AI-related; for example, using and applying AI techniques to perform functions or solve problems in a business setting.

Why Artificial Intelligence Engineers Are in Demand?

Artificial intelligence positions were in demand before COVID-19, but now there’s even more of a surge. Why? “The COVID-19 crisis has created a great deal of uncertainty in the job market, with one of the largest — and hopefully temporary — unemployment spikes ever seen in the modern economy,” according to RTInsights. “One thing is certain, however — artificial intelligence and digitization are driving the growth of new careers. The recent crisis — which has pushed just about every company into digital transformation and virtual workspaces — has only increased demand for AI skills.”

A recent report from Gartner shows that the strongest demand for skilled professionals specialized in AI isn’t from the IT department, but from other business units within a company or organization. 

In a press release highlighting the report, Peter Krensky, research director at Gartner, explains that “high demand and tight labor markets have made candidates with AI skills highly competitive, but hiring techniques and strategies have not kept up.”

Job Responsibilities for an Artificial Intelligence Engineer

As mentioned earlier, job responsibilities will always vary based on the specific position. Technology training and certification provider Simplilearn reports that, generally speaking, common job responsibilities for an AI engineer include:

  • Convert machine learning models into application program interfaces so that other applications can use them 
  • Build AI models from scratch and help others in the organization understand what results they gain from the model
  • Build data ingestion and data transformation infrastructure
  • Automate infrastructure that the data science team uses
  • Perform statistical analysis and tune the results so the organization can make better-informed decisions
  • Set up and manage AI development and product infrastructure
  • Be a good team player
Skills Needed to Be an Artificial Intelligence Engineer

So, now that we’ve detailed the responsibilities of an AI engineer, let’s discuss the hard and soft skills usually required in most positions. It’s important to note, however, that the skills needed may vary depending on the specific job and industry, but according to Simplilearn, AI engineers must typically be proficient in the following:

  • Linear algebra, probability and statistics
  • Spark and big data technologies
  • Algorithms and frameworks
When it comes to soft skills, popular job site Indeed offers up a list of the most sought-after and important ones, including:
  • Problem-solving
  • Effective communication skills
  • Self-direction 
  • Drive
  • Flexibility
  • Teamwork
  • Dependability
  • Conflict resolution
  • Leadership
Other important soft skills include:
  • Analytical thinking
  • Patience and resilience
  • Working independently or as part of a team
  • Attention to detail
  • Focus
  • Willingness to learn new skills and acquire new knowledge

As Indeed explains, “soft skills are often transferable across careers and industries. As a result, you may find that you possess many of the required traits even if you don’t match the exact profile in a job description. As you search for jobs, pay special attention to posts calling for candidates with soft skills or traits you possess.”

Programming Language Proficiency

Programming languages are an essential part of any AI job, and an AI engineer is no exception; in most AI job descriptions, programming proficiency is required.

The platform Analytics Insight lists the best programming languages for artificial intelligence:


which is considered “the ideal coding language used for machine learning, NLP and neural network connections.


otherwise known as logical programming, is considered one of the oldest programming languages


or list processing, “is flexible and adapts to the solution and can be effectively used for machine learning. LISP is known for rapid prototyping and the dynamic creation of new objects.”


one of the most popular programming languages, has a variety of open-source libraries. “Java is user-friendly and provides an independent platform and hence is considered good for developing AI.”


can be used to build neural networks; its speed is its largest advantage.

Other top programming languages for AI include R, Haskell and Julia, according to Towards Data Science.

Education Requirements for an Artificial Intelligence Engineer

If you’re looking to become an artificial intelligence engineer, a master’s degree is highly recommended, and in some positions, required. 

Advanced education will help you achieve a deeper understanding of AI concepts, topics and theories. It’s also a valuable way to gain first-hand experience and meet other professionals in the industry. All of this can translate to helping you gain an important advantage in the job market and often a higher salary. 

According to Datamation, “35% of AI positions require a Ph.D. and 26% require a master’s degree. Why? Because AI is a rapidly growing field and when you study at the Ph.D. level and participate in academic projects, they tend to be cutting edge if not bleeding edge, and that gives the student the experience they need for the work environment.”